Tondi da grandi, piatti alla nascita
La forma dei giganti gassosi alla nascita non è sferica come si potrebbe immaginare, bensì appiatta. È quanto emerge da una nuova ricerca condotta da due scienziati della University of Central Lancashire (Uclan), nel Regno Unito. Secondo quanto riportato nello studio, pubblicato questa settimana su Astronomy & Astrophysics Letters, l’espetto di questi mondi allo stadio di protopianeti sarebbe quello di uno sferoide oblato, cioè una sfera schiacciata ai poli.
Immagine che mostra un embrione planetario simulato visto dall’alto, a sinistra, e visto di lato, a destra. Crediti: Adam Fenton e Dimitris Stamatellos, A&AL, 2024
Per giungere a questa conclusione i ricercatori hanno condotto sofisticate simulazioni sfruttando la potenza di calcolo dei computer della Dirac High Performance Computing Facility. Facendo girare sulle macchine di questa struttura di ricerca il codice Sph Phantom, hanno poi seguito l’evoluzione dei protopianeti da cui i giganti gassosi si formano.
L’obiettivo dei ricercatori era quello di determinare la struttura tridimensionale degli embrioni planetari. Non di qualsiasi embrione planetario, però: solo di quegli embrioni il cui processo di formazione avviene attraverso la cosiddetta instabilità del disco – il modello utilizzato per spiegare la formazione dei pianeti che hanno orbite ampie, cioè pianeti che si trovano molto distanti dalla loro stella madre, tipicamente giganti gassosi.
«Si ritiene che i pianeti si formino o per accrescimento del nucleo, cioè a partire da particelle di polvere che si uniscono per formare corpi via via più grandi, su tempi scala lunghi, o per instabilità del disco, cioè per rottura dei grandi dischi protostellari attorno alle giovani stelle, su tempi scala brevi», spiega Adam Fenton, ricercatore al Jeremiah Horrocks Institute for Mathematics, Physics and Astronomy di Uclan e coautore della pubblicazione.
«Quest’ultima teoria», aggiunge Fenton, «è interessante perché i pianeti di grandi dimensioni possono formarsi molto rapidamente e a grandi distanze dalla loro stella ospite, il che spiega alcune osservazioni».
Secondo il modello della instabilità del disco, i giganti gassosi si formano dunque per frammentazione del disco protoplanetario della stella, frammentazione dovuta a instabilità gravitazionali. Gli aggregati di gas e polvere risultanti dal processo evolvono poi in pianeti per condensazione del gas.
Per modellare l’evoluzione dei protopianeti che si formano attraverso questo meccanismo, i ricercatori hanno imposto al codice di simulazione specifiche condizioni iniziali. Una di queste ha riguardato la massa del disco della stella, regolata al valore di 0.6 masse terrestri, in modo che l’instabilità della struttura producesse molti frammenti. Il team ha quindi avviato le simulazioni e seguito l’evoluzione di ogni singolo frammento, esaminando poi le proprietà degli embrioni planetari prodotti in varie condizioni di temperatura e densità.
Al termine delle simulazioni, i risultati hanno dipinto tutti lo stesso quadro, sottolineano i ricercatori. Un quadro in cui la forma degli embrioni planetari non è quella di una sfera perfetta, come precedentemente ipotizzato, bensì quella di uno sferoide appiattito, cioè un’ellisse schiacciata ai poli. I ricercatori, inoltre, hanno scoperto che i giovani pianeti in formazione accrescono materia prevalentemente dai poli piuttosto che dall’equatore. Si tratta di risultati con importanti implicazioni per le osservazioni dirette di questi “semi” planetari, poiché suggeriscono che il modo in cui essi appaiono al telescopio dipende dall’angolo di visione.
«Studiamo la formazione dei pianeti da molto tempo, ma mai prima d’ora avevamo pensato di determinare la forma dei protopianeti attraverso le simulazioni», dice a questo proposito l’altro autore della pubblicazione, il ricercatore, anche lui dell’Uclan, Dimitris Stamatellos. «Abbiamo sempre pensato che fossero sferici. Rilevare che sono degli sferoidi oblati simili agli smarties, ci ha lasciati molto sorpresi».
I ricercatori stanno ora dando seguito alla ricerca utilizzando modelli computazionali migliorati, per esaminare come la forma di questi pianeti è influenzata dall’ambiente in cui si formano e per determinarne la composizione chimica, che sarà poi confrontata con le future osservazioni del James Webb Space Telescope.
Per saperne di più:
- Leggi su Astronomy & Astrophysics l’articolo “The 3D structure of disc-instability protoplanets”, di Adam Fenton e Dimitris Stamatellos