Starlink, emissioni dalla seconda generazione
Starlink V2 Mini di SpaceX in atresa di essere lanciati. Crediti: SpaceX
Osservazioni effettuate lo scorso anno con il radiotelescopio Lofar (Low Frequency Array) – il più grande radiotelescopio a bassa frequenza sulla Terra, sviluppato da Astron (Netherlands Institute for Radio Astronomy) e operato in collaborazione con altri nove paesi europei – hanno dimostrato che i satelliti Starlink di prima generazione emettono involontariamente onde radio che possono ostacolare le osservazioni astronomiche. Ora nuove osservazioni, sempre con Lofar, hanno dimostrato che anche i satelliti Starlink di seconda generazione “V2-mini” purtroppo non sono da meno.
Negli ultimi anni, il numero di satelliti lanciati in orbita terrestre bassa (Leo) è salito alle stelle, grazie soprattutto alla rapida commercializzazione dello spazio e ai progressi della tecnologia satellitare. Dal 2019, aziende come SpaceX e OneWeb hanno lanciato migliaia di satelliti, soprattutto per le telecomunicazioni. Si prevede che entro la fine del decennio il numero di satelliti in orbita potrebbe superare le 100mila unità. Contestualmente, l’aumento delle emissioni di onde radio dai satelliti in orbita terrestre bassa solleva serie preoccupazioni per il futuro della ricerca astronomica.
Quest’ultimo studio, pubblicato su Astronomy & Astrophysics, è stato condotto utilizzando due lunghe sessioni di osservazione con Lofar, il 19 luglio 2024, coprendo le frequenze radio sopra e sotto la banda di trasmissione FM utilizzata dalle stazioni tipiche delle radio di casa (tra 10 e 88 MHz e tra 110 e 188 MHz). Durante queste osservazioni, il team ha rilevato radiazioni elettromagnetiche indesiderate (Uemr) da quasi tutti i satelliti Starlink osservati, compresi quelli di prima e seconda generazione.
«Con Lofar abbiamo avviato un programma di monitoraggio delle emissioni indesiderate dei satelliti appartenenti a diverse costellazioni e le nostre osservazioni mostrano che i satelliti Starlink di seconda generazione presentano emissioni più forti ed emettono su una gamma più ampia di frequenze radio, rispetto ai satelliti di prima generazione», spiega Cees Bassa dell’Astron, autore principale dello studio.
L’analisi ha infatti rivelato che questi nuovi satelliti emettono onde radio fino a 32 volte più luminose rispetto alla prima generazione, con livelli potenzialmente superiori alle soglie di interferenza stabilite a livello internazionale per le emissioni e agli standard di compatibilità elettromagnetica terrestre ancora più rilassati.
«Rispetto alle più deboli sorgenti astrofisiche che osserviamo con Lofar, le Uemr dei satelliti Starlink sono 10 milioni di volte più luminose. Questa differenza è simile a quella tra le stelle più deboli visibili a occhio nudo rispetto alla luminosità della Luna piena. Poiché SpaceX sta lanciando circa 40 satelliti Starlink di seconda generazione ogni settimana, questo problema sta diventando sempre più grave», aggiunge Bassa.
Il video mostra il cielo radio sopra Lofar, alla lunghezza d’onda di 5 metri. A sinistra sono mostrati i dati reali, con le sorgenti radio più luminose. A destra si vedono i dati con la sottrazione del valore medio dei pixel, che evidenzia le variazioni di luminosità. A questa lunghezza d’onda radio vediamo scintillazione dove le sorgenti variano nel tempo, come stelle che brillano di notte. I satelliti Starlink sono visti come sorgenti che si muovono nel cielo, corrispondenti alle previsioni degli elementi orbitali disponibili al pubblico (segni rossi). Crediti: Astron
La ricerca evidenzia la necessità di norme più severe sulle Uemr satellitari per preservare la qualità delle osservazioni radioastronomiche. «L’umanità si sta chiaramente avvicinando a un punto di inflessione in cui dobbiamo agire per preservare il nostro cielo come finestra per esplorare l’universo dalla Terra. Le compagnie satellitari non sono interessate a produrre queste radiazioni indesiderate, quindi ridurle al minimo dovrebbe essere una priorità delle loro politiche spaziali sostenibili», afferma Federico Di Vruno dell’Osservatorio Ska. «Starlink non è l’unico grande attore in Leo, ma ha la possibilità di stabilire uno standard in questo campo».
I ricercatori sottolineano che se da un lato i satelliti di seconda generazione sono stati progettati per migliorare la connettività e fornire servizi di comunicazione, dall’altro le emissioni radio indesiderate rappresentano una minaccia crescente per l’integrità delle osservazioni astronomiche. Poiché le conseguenze di tali interferenze diventano sempre più evidenti, la collaborazione tra le aziende satellitari, le agenzie di regolamentazione e la comunità astronomica è essenziale per elaborare strategie di mitigazione efficaci.
Nei Paesi Bassi, uno dei Paesi più densamente popolati d’Europa, Astron gestisce Lofar. Questo è possibile solo grazie al supporto normativo delle agenzie locali, provinciali e nazionali. «Da quando Lofar è stato avviato, più di un decennio fa – quando ci fu detto che presto avremmo avuto difficoltà ad osservare a causa delle interferenze radio – con il sostegno normativo e una collaborazione produttiva con l’industria, sono state fatte complessivamente oltre 1000 mitigazioni individuali in collaborazione con decine di gruppi, aziende, infrastrutture, agenzie e individui in tutto il paese», afferma Jessica Dempsey, direttore generale e scientifico di Astron. «E questo rapporto non è unilaterale. Queste tecniche intelligenti per trovare segnali deboli nell’universo hanno restituito progressi tecnologici all’industria e alla società – dal Gps al WiFi. Non solo coesistiamo, ma prosperiamo insieme. Abbiamo le soluzioni per questa simbiosi anche nello spazio: c’è solo bisogno che le autorità di regolamentazione ci sostengano e che l’industria ci venga incontro. Senza mitigazioni, molto presto le uniche costellazioni che vedremo saranno quelle create dall’uomo».
Per saperne di più:
- Leggi su Astronomy & Astrophysics l’articolo “Bright unintended electromagnetic radiation from second generation Starlink satellites” di Bassa, C., F. Di Vruno, B. Winkel, G.I.G. Jósza, M.A. Brentjens e X. Zhang