Salta al contenuto principale


Bacterium Demonstrates Extreme Radiation Resistance Courtesy of an Antioxidant


Survival mechanisms in Deinococcus radiodurans bacterium. (Credit: Feng Liu et al., 2023)

Extremophile lifeforms on Earth are capable of rather astounding feats, with the secret behind the extreme radiation resistance of one of them now finally teased out by researchers. As one of the most impressive extremophiles, Deinococcus radiodurans is able to endure ionizing radiation levels thousands of times higher than what would decisively kill a multicellular organism like us humans. The trick is the antioxidant which this bacterium synthesizes from multiple metabolites that combine with manganese. An artificial version of this antioxidant has now been created that replicates the protective effect.

The ternary complex dubbed MDP consists of manganese ions, phosphate and a small peptide, which so far has seen application in creating vaccines for chlamydia. As noted in a 2023 study in Radiation Medicine and Protection by [Feng Liu] et al. however, the D. radiodurans bacterium has more survival mechanisms than just this antioxidant. Although much of the ionizing radiation is neutralized this way, it can not be fully prevented. This is where the highly effective DNA repair mechanism comes into play, along with a range of other adaptations.

The upshot of this is the synthesis of a very effective and useful antioxidant, but as alluded to in the press releases, just injecting humans with MDP will not instantly give them the same super powers as our D. radiodurans buddy.

Featured image: Survival mechanisms in Deinococcus radiodurans bacterium. (Credit: Feng Liu et al., 2023)


hackaday.com/2024/12/18/bacter…

⇧