Finding Simpler Schlieren Imaging Systems
Perhaps the most surprising thing about shadowgraphs is how simple they are: you simply take a point source of light, pass the light through a the volume of air to be imaged, and record the pattern projected on a screen; as light passes through the transition between areas with different refractive indices, it gets bent in a different direction, creating shadows on the viewing screen. [Degree of Freedom] started with these simple shadowgraphs, moved on to the more advanced schlieren photography, and eventually came up with a technique sensitive enough to register the body heat from his hand.
The most basic component in a shadowgraph is a point light source, such as the sun, which in experiments was enough to project the image of an escaping stream of butane onto a sheet of white paper. Better point sources make the imaging work over a wider range of distances from the source and projection screen, and a magnifying lens makes the image brighter and sharper, but smaller. To move from shadowgraphy to schlieren imaging, [Degree of Freedom] positioned a razor blade in the focal plane of the magnifying lens, so that it cut off light refracted by air disturbances, making their shadows darker. Interestingly, if the light source is small and point-like enough, adding the razor blade makes almost no difference in contrast.
With this basic setup under his belt, [Degree of Freedom] moved on to more unique schlieren setups. One of these replaced the magnifying lens with a standard camera lens in which the aperture diaphragm replaced the razor blade, and another replaced the light source and razor with a high-contrast black-and-white pattern on a screen. The most sensitive technique was what he called double-pinhole schlieren photography, which used a pinhole for the light source and another pinhole in place of the razor blade. This could image the heated air rising from his hand, even at room temperature.
The high-contrast background imaging system is reminiscent of this technique, which uses a camera and a known background to compute schlieren images. If you’re interested in a more detailed look, we’ve covered schlieren photography in depth before.
youtube.com/embed/kRyE-n9UaIg?…
Thanks to [kooshi] for the tip!
Riceviamo e pubblichiamo:
Una settimana italo-palestinese senza precedenti
Di: Mohammad Hannoun – Lunedì 6 ottobre 2025
La scorsa settimana in Italia è stata caratterizzata da un’intensa mobilitazione popolare a tutti i livelli: sociale, istituzionale, studentesco e sindacale. Le iniziative sono iniziate sabato 27 settembre, come una valanga che ha preso forza di giorno in giorno, in un movimento senza precedenti per intensità, varietà e diffusione sul territorio italiano.
Il momento cruciale è arrivato giovedì 2 ottobre, quando è giunta la notizia dell’attacco alla “Flottiglia della Solidarietà Globale”. In tempi rapidissimi, folle di cittadini sono scese in piazza in tutte le città e paesi d’Italia, in un moto popolare di solidarietà con la flottiglia e di condanna dell’atto di pirateria. La presenza di 44 cittadini italiani a bordo – tra cui parlamentari e personalità pubbliche – ha spinto il governo ad attivare rapidamente una cellula di crisi per seguire da vicino l’evolversi della situazione.
Venerdì 3 ottobre si è tenuto lo sciopero generale indetto dai sindacati italiani, che ha paralizzato il Paese. I trasporti ferroviari, le università, gli aeroporti e la vita pubblica si sono fermati completamente. Dalla mattina fino alla sera, cortei e manifestazioni hanno riempito le strade in un’atmosfera di protesta determinata e partecipata.
Il culmine della settimana è stato sabato 4 ottobre, con la grande manifestazione nazionale convocata dalle istituzioni palestinesi in Italia, con l’adesione di sindacati, movimenti studenteschi e organizzazioni della società civile italiana. Fin dal mattino presto, i manifestanti sono arrivati a Roma da ogni parte del Paese con autobus, treni e altri mezzi. Alle 14:30, come da programma, la manifestazione ha preso il via tra piazze gremite, bandiere palestinesi sventolanti e voci che chiedevano libertà, giustizia e la fine del genocidio a Gaza.
I media hanno parlato di oltre un milione di partecipanti. La folla era come un mare in tempesta, compatta e determinata a chiedere lo stop a ogni forma di collaborazione con l’entità sionista, la fine della vendita di armi, e l’avvio di un processo giusto per i responsabili dei crimini di guerra.
È stato un giorno palestinese per eccellenza, destinato ad avere conseguenze importanti. Il popolo ha parlato, e il messaggio è chiaro: è tempo che l’Italia adotti una posizione ufficiale a favore della giustizia e dei diritti umani.
Mohammad Hannoun
Associazione dei palestinesi in Italia (API)
FREE ASSANGE Italia
Riceviamo e pubblichiamo: Una settimana italo-palestinese senza precedenti Di: Mohammad Hannoun – Lunedì 6 ottobre 2025 La scorsa settimana in Italia è stata caratterizzata da un’intensa mobilitazione popolare a tutti i livelli: social…Telegram
2G Gone? Bring It Back Yourself!
Some parts of the world still have ample 2G coverage; for those of in North America, 2G is long gone and 3G has either faded into dusk or beginning its sunset. The legendary [dosdude1] shows us it need not be so, however: Building a Custom 2G GSM Cellular Base Station is not out of reach, if you are willing to pay for it. His latest videos show us how.
Before you start worrying about the FCC or its equivalents, the power here is low enough not to penetrate [dosdude]’s walls, but technically this does rely in flying under the radar. The key component is a Nuand BladeRF x40 full-duplex Software Defined Radio, which is a lovely bit of open-source hardware, but not exactly cheap. Aside from that, all you need is a half-decent PC (it at least needs USB-3.0 to communicate with the SDR, the “YateBTS” software (which [dosdude1] promises to provide a setup guide for in a subsequent video) and a sim card reader. Plus some old phones, of course, which is rather the whole point of this exercise.
The 2G sunset, especially when followed by 3G, wiped out whole generations of handhelds — devices with unique industrial design and forgotten internet protocols that are worth remembering and keeping alive. By the end of the video, he has his own little network, with the phones able to call and text one another on the numbers he set up, and even (slowly) access the internet through the miniPC’s network connection.
Unlike most of the hacks we’ve featured from [dosdude1], you won’t even need a soldering iron, never mind a reflow oven for BGA.
youtube.com/embed/CMWvA4Ty1Wk?…
Logitech POP Buttons are About to go Pop
For those who missed out on the past few years of ‘smart home’ gadgets, the Logitech POP buttons were introduced in 2018 as a way to control smart home devices using these buttons and a central hub. After a few years of Logitech gradually turning off features on this $100+ system, it seems that Logitech will turn off the lights in two weeks from now. Remaining POP Button users are getting emails from Logitech in which they are informed of the shutdown on October 15 of 2025, along with a 15% off coupon code for the Logitech store.
Along with this coupon code only being usable for US-based customers, this move appears to disable the hub and with it any interactions with smart home systems like Apple HomeKit, Sonos, IFTTT and Philips Hue. If Logitech’s claim in the email that the buttons and connected hub will ‘lose all functionality’, then it’d shatter the hopes for those who had hoped to keep using these buttons in a local fashion.
Suffice it to say that this is a sudden and rather customer-hostile move by Logitech. Whether the hub can be made to work in a local fashion remains to be seen. At first glance there don’t seem to be any options for this, and it’s rather frustrating that Logitech doesn’t seem to be interested in the goodwill that it would generate to enable this option.
Know Audio: Distortion Part Two
It’s been a while since the last installment in our Know Audio series, in which we investigated distortion as it applies to Hi-Fi audio. Now it’s time to return with part two of our look at distortion, and attempt some real-world distortion measurements on the bench.
Last time, we examined distortion from a theoretical perspective, as the introduction of unwanted harmonics as a result of non-linearities in the signal path. Sometimes that’s a desired result, as with a guitar pedal, but in a Hi-Fi system where the intention is to reproduce as faithfully as possible a piece of music from a recording, the aim is to make any signal path components as linear as possible. When we measure the distortion, usually expressed as THD, for Total Harmonic Distortion, of a piece of equipment we are measuring the ratio of those unwanted harmonics in the output to the frequencies we want, and the resulting figure is commonly expressed in dB, or as a percentage.
The Cheapest Of Audio Kits, Analysed
The Hackaday audio test bench in all its glory.
Having explained what we are trying to do, it’s on to the device in question and the instruments required. On the bench in front of me I have my tube headphone amplifier project, a Chinese 6J1 preamp kit modified with transformers on its output for impedance matching. I’ve investigated the unmodified version of this kit here in the past, and measured a THD of 0.03% when it’s not driven into distortion, quite an acceptable figure.
To measure the distortion I’m using my audio signal generator, a Levell TG200DMP that I was lucky enough to obtain through a friend. It’s not the youngest of devices, but it’s generally reckoned to be a pretty low distortion oscillator. It’s set to 1 KHz and a 1 V peak-to-peak line level audio output, which feeds the headphone amplifier input. The output from the amplifier is feeding a set of headphones, and my trusty HP334A distortion analyser is monitoring the result.
How Does A Distortion Analyser Work Then?
The business end of my trusty HP.
A distortion analyser is two instruments in one, a sensitive audio level meter, and an extremely high quality notch filter. In an instrument as old as this one everything is analogue, while in a modern audio analyser everything including the signal source is computer controlled.
The idea is that the analyser is first calibrated against the incoming audio using the voltmeter, and then the filter is switched into the circuit. The filter is then adjusted to reject the fundamental frequency, in this case 1 kHz, leaving behind only the harmonic distortion. The audio level meter can then be used to read the distortion. If you’re interested in how these work in greater detail I made one a few years ago in GNU Radio for an April Fool post about gold cables.
Using the HP offers an experience that’s all too rare in 2025, that of tuning an analogue circuit. It settles down over time, so when you first tune it for minimum 1kHz level it will retune to a lower level after a while. So mine has been running but idle for the last few hours, in order to reach maximum stability. I’m measuring 0.2% THD for the headphone amplifier, which is entirely expected given that the transformers it uses are not of high quality at all.
An Instrument Too Expensive For A Hackaday Expense Claim
An Audio Precision APx525 audio analyzer. Bradp723 (CC-BY-SA 3.0)
It’s important to state that I’ve measured the THD at only one frequency, namely 1 kHz. This is the frequency at which most THD figures are measured, so it’s an easy comparison, but a high-end audio lab will demand measurements across a range of frequencies. That’s entirely possible with the Levell and the HP, but it becomes a tedious manual process of repetitive calibration and measurement.
As you might expect, a modern audio analyser has all these steps computerised, having in place of the oscillator and meter a super-high-quality DAC and ADC, and instead of the 334A’s filter tuning dial, a computer controlled switched filter array. Unsurprisingly these instruments can be eye-wateringly expensive.
So there in a nutshell is a basic set-up to measure audio distortion. It’s extremely out of date, but in its simplicity I hope you find an understanding of the topic. Keep an eye out for a 334A and snap it up if you see one for not a lot. I did, and it’s by far the most beautifully-made piece of test equipment I own.
Weaving Circuits from Electronic Threads
Though threading is a old concept in computer science, and fabric computing has been a term for about thirty years, the terminology has so far been more metaphorical than strictly descriptive. [Cedric Honnet]’s FiberCircuits project, on the other hand, takes a much more literal to weaving technology “into the fabric of everyday life,” to borrow the phrase from [Mark Weiser]’s vision of computing which inspired this project. [Cedric] realized that some microcontrollers are small enough to fit into fibers no thicker than a strand of yarn, and used them to design these open-source threads of electronics (open-access paper).
The physical design of the FiberCircuits was inspired by LED filaments: a flexible PCB wrapped in a protective silicone coating, optionally with a protective layer of braiding surrounding it. There are two kinds of fiber: the main fiber and display fibers. The main fiber (1.5 mm wide) holds an STM32 microcontroller, a magnetometer, an accelerometer, and a GPIO pin to interface with external sensors or other fibers. The display fibers are thinner at only one millimeter, and hold an array of addressable LEDs. In testing, the fibers could withstand six Newtons of force and be bent ten thousand times without damage; fibers protected by braiding even survived 40 cycles in a washing machine without any damage. [Cedrik] notes that finding a PCB manufacturer that will make the thin traces required for this circuit board is a bit difficult, but if you’d like to give it a try, the design files are on GitHub.
[Cedrik] also showed off a few interesting applications of the thread, including a cyclist’s beanie with automatic integrated turn signals, a woven fitness tracker, and a glove that senses the wearer’s hand position; we’re sure the community can find many more uses. The fibers could be embroidered onto clothing, or embedded into woven or knitted fabrics. On the programming side, [Cedrik] ported support for this specific STM32 core to the Arduino ecosystem, and it’s now maintained upstream by the STM32duino project, which should make integration (metaphorically) seamless.
One area for future improvement is in power, which is currently supplied by small lithium batteries; it would be interesting to see an integration of this with power over skin. This might be a bit more robust, but it isn’t first knitted piece of electronics we’ve seen. Of course, rather than making wearables more unobtrusive, you can go in the opposite direction.
youtube.com/embed/OA_IuWRBbfM?…
11 condanne a morte per frode online. La Cina da un duro colpo alla criminalità informatica
Nel contesto della lunga battaglia della Cina contro le frodi transfrontaliere , le autorità hanno emesso un verdetto in uno dei casi più eclatanti degli ultimi anni.
Riguarda una rete criminale su larga scala operante nel Myanmar settentrionale e collegata a quattro clan, soprannominati le “Quattro Grandi Famiglie” dai media cinesi. Il tribunale ha riconosciuto colpevoli 39 persone, 16 delle quali sono state condannate a morte, altre 11 all’ergastolo e le restanti a pene detentive comprese tra i 5 e i 24 anni.
Tra le persone giustiziate figurano figure chiave coinvolte nella creazione e nel controllo delle cosiddette fabbriche di frodi nelle telecomunicazioni.
L’indagine è iniziata nell’estate del 2023 in seguito a un tragico incidente avvenuto nella “Villa della Tigre Nascosta“, un enorme centro di frodi situato al confine tra Myanmar e Cina. Questa enclave recintata comprendeva hotel, centri commerciali ed edifici adibiti a centri per frodare i cittadini tramite Internet e telefono.
La struttura era sorvegliata da un esercito privato composto da circa duemila persone. Nell’ottobre di quell’anno, alcuni prigionieri impiegati come operatori di call center fraudolenti tentarono di fuggire. I soldati aprirono il fuoco sulla folla, uccidendo almeno sessanta persone. Rapporti non confermati suggeriscono che tra le vittime potrebbero esserci agenti delle forze dell’ordine cinesi sotto copertura impegnati in operazioni sotto copertura.
Questo incidente segnò una svolta. Già a novembre, il Ministero degli Interni cinese aveva annunciato una ricompensa per la cattura dei leader del gruppo. Nel giro di pochi giorni, quattro dei leader furono arrestati.
Ne è seguita un’operazione di cooperazione internazionale su larga scala: con la partecipazione del Ministero degli Affari Esteri del Myanmar, la Cina ha ottenuto l’estradizione di dieci boss della mafia, tra cui membri di tre clan.
Ognuna di queste famiglie controllava il proprio settore, dalle infrastrutture di telecomunicazione e dai casinò alla logistica e al riciclaggio di denaro. In alcuni casi, i sospettati erano legati al traffico di organi e di droga.
Successivamente, nel dicembre 2024, la Procura Suprema del Popolo cinese incriminò formalmente 39 membri di uno dei tre clan. I documenti del caso descrivevano dettagliatamente metodi brutali di controllo del “personale”: a molti prigionieri veniva offerto di comprare la libertà se non avessero raggiunto la quota giornaliera di vittime truffate.
Una delle vittime ha raccontato di essere stata picchiata con tubi d’acciaio per aver tentato di fuggire e di aver ucciso il suo compagno. La leadership del gruppo era ormai passata alla nipote del fondatore, dopo che il capo della famiglia si era sparato durante un tentativo di arresto da parte delle forze di sicurezza cinesi.
Secondo il Ministero degli Interni cinese, più di 53.000 presunti truffatori online sono stati rimpatriati dal Myanmar settentrionale durante l’operazione condotta dal 2023 alla fine del 2024.
L’efficace collaborazione tra le autorità dei due Paesi ha inferto un duro colpo all’infrastruttura ombra della criminalità informatica transfrontaliera , che la Cina combatte da anni.
L'articolo 11 condanne a morte per frode online. La Cina da un duro colpo alla criminalità informatica proviene da il blog della sicurezza informatica.
Huawei, presunta vendita di dati sul dark web
Il 3 ottobre 2025, su un noto forum del dark web è stato pubblicato un thread, da un utente identificato come KaruHunters. Nel post sostiene di aver compromesso i sistemi di Huawei Technologies Co., Ltd. e rivendica la messa in vendita di dati.
Attualmente, non possiamo confermare l’autenticità della notizia, poiché l’organizzazione non ha ancora pubblicato un comunicato ufficiale sul proprio sito web in merito all’incidente. Le informazioni riportate provengono da fonti pubbliche accessibili su siti underground, pertanto vanno interpretate come una fonte di intelligence e non come una conferma definitiva.
Secondo quanto dichiarato, la presunta violazione avrebbe permesso l’accesso al “source code” e “internal tools” dell’azienda. L’autore, è inoltre disponibile alla vendita del materiale o alla negoziazione privata con un prezzo di ingresso pari a 1.000 dollari. Non vengono forniti dettagli tecnici pubblici sulla modalità d’attacco o sulla natura specifica dei file sottratti. Ma, la disponibilità del codice sorgente suggerisce un’intrusione mirata ai sistemi di sviluppo o repository interni.
Il fatto che l’attore menzioni “tools interni” lascia intendere che l’accesso sia andato oltre un semplice dump di credenziali, indicando un livello di intrusione potenzialmente profondo.
Secondo i canali istituzionali di Huawei, al momento non ci sono evidenze pubbliche che confermino la veridicità della violazione. Secondo prassi CTI e giornalistica, in assenza di campioni verificabili o nota ufficiale, il caso resta “da confermare” e va maneggiato con prudenza.
Analisi del “Tree” allegato
L’analisi del file elenco allegato “Tree” (paste.txt), fa evincere che i contenuti elencati appartengono all’ecosistema TeX/CWEB e alla distribuzione TeX Live, includendo progetti open‑source come dvisvgm, brotli, woff2, potrace e una struttura di installazione “install‑tl‑20251003”.paste.txt
Secondo questa evidenza, non emergono namespace, pipeline o domini interni che permettano di inferire una fuga di proprietà intellettuale riconducibile a Huawei.paste.txt
L’attore citato
Consultando i feed OSINT, KaruHunters è presente nei tracciamenti come attore orientato alla monetizzazione di presunti data‑leak tramite vendite riservate e rilascio di indizi limitati.
Secondo le stesse fonti, l’attribuzione rimane indicativa in assenza di riscontri forensi indipendenti o conferme ufficiali.
Conclusione
Fino a una conferma ufficiale, il presunto Huawei Breach resta un caso da monitorare, ma non verificato. Se confermato, l’incidente potrebbe avere un impatto significativo in diversi ambiti:
- Rischio IP leakage: esposizione di codice sorgente e strumenti interni può facilitare exploit mirati.
- Reputazione aziendale: ulteriore pressione su Huawei, già spesso sotto scrutinio per questioni di sicurezza.
- Implicazioni geopolitiche: data la natura strategica dell’azienda, una compromissione potrebbe avere conseguenze anche a livello statale.
Le organizzazioni del settore dovrebbero mantenere un alto livello di allerta, aggiornare sistemi di monitoraggio su forum underground e verificare eventuali correlazioni con precedenti campagne attribuite a gruppi noti.
RHC monitorerà l’evoluzione della vicenda in modo da pubblicare ulteriori news sul blog, qualora ci fossero novità sostanziali. Qualora ci siano persone informate sui fatti che volessero fornire informazioni in modo anonimo possono utilizzare la mail crittografata del whistleblower.
L'articolo Huawei, presunta vendita di dati sul dark web proviene da il blog della sicurezza informatica.
E’ possibile riscaldare una casa con i Raspberry Pi? Nel Regno Unito la risposta è si
Nel Regno Unito, hanno iniziato a testare un modo insolito per riscaldare le case: utilizzare mini data center alimentati da Raspberry Pi.
Il progetto è implementato da UK Power Networks nell’ambito del programma SHIELD (Smart Heat and Intelligent Energy in Low-Income Areas).
UK Power Networks gestisce la rete elettrica e le sottostazioni nel sud-est dell’Inghilterra ed è responsabile dell'”ultimo miglio” della fornitura di energia ai consumatori. Il programma SHIELD prevede l’installazione di pannelli solari e batterie nelle abitazioni e, in alcuni casi, la sostituzione delle caldaie a gas con i sistemi di elaborazione dati compatti HeatHub.
HeatHub è sviluppato e gestito da Thermify. Ogni unità contiene un cluster di 500 moduli di elaborazione Raspberry Pi Compute Module 4 o Compute Module 5, completamente immersi nell’olio. Il calore di scarto viene utilizzato per riscaldare gli ambienti e l’acqua calda, trasformando l’unità in un’alternativa intelligente alle caldaie a gas.
Il dispositivo si connette a una connessione Internet dedicata, così gli utenti non devono preoccuparsi di consumare la larghezza di banda della propria connessione domestica.
Secondo UKPN, il progetto pilota coinvolge Power Circle Projects, l’associazione per l’edilizia popolare Eastlight Community Homes e Essex Community Energy. L’esperimento testa anche una nuova “tariffa sociale” per il riscaldamento: le famiglie pagheranno una quota fissa di 5,60 sterline al mese (circa 7,50 dollari). Gli organizzatori stimano che il programma potrebbe ridurre le bollette energetiche del 20-40%.
“I risultati del progetto pilota sono molto incoraggianti”, ha affermato Charlie Edgar, rappresentante di Eastlight Community Homes. “Vediamo il potenziale per fornire alle famiglie un riscaldamento affidabile, prevedibile e conveniente, senza lo stress di bollette in aumento”.
Nella prima fase, SHIELD sta raccogliendo dati per ampliare il progetto: UKPN spera di installare 100.000 sistemi all’anno entro il 2030.
Iniziative simili sono già emerse nel Regno Unito. Ad esempio, Heata, un’azienda co-fondata da British Gas, offre una soluzione per l’installazione di server su caldaie domestiche, sfruttando i carichi di lavoro di elaborazione dati di partner come il provider cloud Civo. Un’altra azienda, Deep Green, utilizza mini data center per riscaldare aziende e piscine pubbliche, trasformando l’elaborazione dati in una fonte di calore.
L'articolo E’ possibile riscaldare una casa con i Raspberry Pi? Nel Regno Unito la risposta è si proviene da il blog della sicurezza informatica.
EU-Überwachungsgesetz: Kinderschutzbund stellt sich gegen Chatkontrolle
EU-Überwachungspläne: Last-Minute-Petition gegen Chatkontrolle gestartet
Chatcontrol: il Ministero dell’Interno tedesco cerca di forzare l’approvazione con un trucco dell’ultimo minuto – La Commissione UE inganna i difensori dei diritti dei minori con false informazioni
Pubblichiamo la traduzione del post pubblicato da Patrick Breyer oggi 6 ottobre Con una mossa drastica dell’ultimo minuto, il Ministero Federale dell’Interno, guidato dalla CSU, sta tentando di costringere il Ministero Federale della Giustizia (SPD) ad approvare il controverso chatcontrol UE entro martedì (7 ottobre) . Con il sostegno tedesco, si otterrebbe per la prima volta una maggioranza…
Pirate News: What did Trump give to get his TikTok deal?
Steve and James discuss The Black Response’s excellent Abolition and Alternatives Conference this weekend and Trump’s TikTok deal and what it could mean. We also discussed ICE and other TLAs attacking an apartment building in Chicago in the middle of the night where they seized and abused the people who lived in it. Finally, we followed up on HorizonMass/BINJ’s reporting on the Boston Police Department’s use of drones at two public events.
youtube.com/embed/I-w5-TZR6v4?…
Join us at the Boston Anarchist Bookfair Nov. 1-2.
Sign up to our newsletter to get notified of new events or volunteer. Join us on:
Check out:
Some links we mentioned:
- The GOP’s Government Shutdown;
- Abolition and Alternatives Conference (AAC) Starts Today;
- TikTok’s algorithm will be overseen by Oracle in the US after the sale is completed;
- TikTok’s U.S. operations may be bought by Oracle, Andreessen Horowitz, Silver Lake and others;
- Trump Makes It Very Clear They’re Going To Turn TikTok Into A Right Wing Propaganda Machine;
- Why Do We Assume TrumpTok Will Succeed?
- Chicago And The End Of American Liberty;
- Boston Police Deployed 71 Drone Flights Over Caribbean Carnival;
- Did The BPD Fly A Surveillance Drone Over The Dominican Parade? They Won’t Tell Us.
Image Credit: Fair use of TikTok‘s logo for commentary on news about the company. We reserve no rights on the image we created.
reshared this
“Libri nel bosco”, Pietro Grasso il 10 ottobre all’Infernetto
@Giornalismo e disordine informativo
articolo21.org/2025/10/libri-n…
Il quinto incontro della rassegna letteraria “Libri nel bosco” targata #Noi vedrà protagonista Pietro Grasso, ex magistrato e presidente emerito del Senato. Il 10 ottobre alle 19, da Ohana, in via
A chiunque si fosse affezionato alla storia della nuova pista ciclabile di Reggio Emilia, in costruzione da aprile (1 km): qualche aggiornamento.
Sono stati rotti e poi sostituiti 3 segnali per il superamento a sinistra dell'ostacolo (il muretto), ma oggi mi sono emozionato: non solo sono ricomparsi i paletti, non solo l'asfalto è quasi del tutto terminato, ma è addirittura comparsa la segnaletica.
Di questo passo sotto l'albero la troveremo finita, come un inaspettato regalo di natale alla cittadinanza!
[Per chi non avesse capito, sono ironico. 6 mesi di cantiere per una pista di 1 km, peraltro già esistente, non sono accettabili. E badate bene che ancora non sono conclusi i lavori].
#reggioemilia #pisteciclabili #piste #bicicletta #lentezza #sicurezza #emiliaromagna #mobiliàurbana
L'UE sta per piantare l'ultimo chiodo nella bara della privacy.
Morrolinux
youtu.be/UXGVtT9sRqE?si=vWoPKa…
Global Flotilla, Thunberg: "per Gaza dai nostri governi neanche il minimo indispensabile"
Leggi su Sky TG24 l'articolo Global Flotilla, Thunberg: 'per Gaza dai nostri governi neanche il minimo indispensabile'Redazione Sky TG24 (Sky TG24)
Benedetta Scuderi: sulla Flotilla per restituire umanità al mondo
@Giornalismo e disordine informativo
articolo21.org/2025/10/benedet…
Benedetta Scuderi, giovane parlamentare europea di Alleanza Verdi e Sinistra, ha scelto di salire a bordo di una delle barche della Flotilla per un senso di giustizia. Non c’era
"Il principale dazio che paga oggi l’economia italiana è rappresentato dall’appartenenza all’Unione Europea"
L'analisi del prof. Valerio Malvezzi.
radioradio.it/2025/10/export-i…
"Mandaci tuo marito e i tuoi figli in guerra!"
Lo sfogo di una deputata contro von der Leyen.
Giovedì si vota per due mozioni di sfiducia nei confronti della Commissione europea.
radioradio.it/2025/10/deputata…
#RepubblicaCeca: populismo batte UE
Rep. Ceca: populismo batte UE
Il fondamentalismo ultra-liberista e guerrafondaio dell’Unione Europea ha preso un altro meritato schiaffo elettorale nel fine settimana con il ritorno al successo in Repubblica Ceca dell’ex primo ministro, nonché aperto simpatizzante di Donald Trump…www.altrenotizie.org
Libraries have shared their collections internationally for decades. Trump’s tariffs are throwing that system into chaos and can ‘hinder academic progress.’#News
Breaking News Channel reshared this.
Ministero dell'Istruzione
Da mercoledì 8 a lunedì 13 ottobre 2025 si terrà a Napoli #NextGenAI, il primo summit internazionale sull’Intelligenza Artificiale nella scuola, promosso dal #MIM nell’ambito del Campus itinerante #ScuolaFutura.Telegram
Ministero dell'Istruzione
📣 Piano #welfare, pubblicato oggi un avviso per la sottoscrizione di convenzioni non onerose finalizzate alla vendita al personale scolastico di beni e servizi a condizioni agevolate, tramite una piattaforma tecnologica dedicata.Telegram
È disponibile il nuovo numero della newsletter del Ministero dell’Istruzione e del Merito.
Ministero dell'Istruzione
#NotiziePerLaScuola È disponibile il nuovo numero della newsletter del Ministero dell’Istruzione e del Merito.Telegram
Ministero dell'Istruzione
#NoiSiamoLeScuole, questa settimana è dedicato al nuovo Nido “Arcobaleno” di Bucine, in provincia di Arezzo, e ai tanti laboratori organizzati dal Liceo “Rita Levi Montalcini” di Casarano, in provincia di Lecce, per offrire una didattica innovativa e…Telegram
Social media at a time of war
IT'S MONDAY, AND THIS IS DIGITAL POLITICS. I'm Mark Scott, and I have many feelings about Sora, OpenAI's new AI-generated social media platform. Many of which are encapsulated by this video by Casey Neistat. #FreeTheSlop.
— The world's largest platforms have failed to respond to the highest level of global conflict since World War II.
— The semiconductor wars between China and the United States are creating a massive barrier between the world's two largest economies.
— China's DeepSeek performs significantly worse than its US counterparts on a series of benchmark tests.
Let's get started:
How we trained an ML model to detect DLL hijacking
DLL hijacking is a common technique in which attackers replace a library called by a legitimate process with a malicious one. It is used by both creators of mass-impact malware, like stealers and banking Trojans, and by APT and cybercrime groups behind targeted attacks. In recent years, the number of DLL hijacking attacks has grown significantly.
Trend in the number of DLL hijacking attacks. 2023 data is taken as 100% (download)
We have observed this technique and its variations, like DLL sideloading, in targeted attacks on organizations in Russia, Africa, South Korea, and other countries and regions. Lumma, one of 2025’s most active stealers, uses this method for distribution. Threat actors trying to profit from popular applications, such as DeepSeek, also resort to DLL hijacking.
Detecting a DLL substitution attack is not easy because the library executes within the trusted address space of a legitimate process. So, to a security solution, this activity may look like a trusted process. Directing excessive attention to trusted processes can compromise overall system performance, so you have to strike a delicate balance between a sufficient level of security and sufficient convenience.
Detecting DLL hijacking with a machine-learning model
Artificial intelligence can help where simple detection algorithms fall short. Kaspersky has been using machine learning for 20 years to identify malicious activity at various stages. The AI expertise center researches the capabilities of different models in threat detection, then trains and implements them. Our colleagues at the threat intelligence center approached us with a question of whether machine learning could be used to detect DLL hijacking, and more importantly, whether it would help improve detection accuracy.
Preparation
To determine if we could train a model to distinguish between malicious and legitimate library loads, we first needed to define a set of features highly indicative of DLL hijacking. We identified the following key features:
- Wrong library location. Many standard libraries reside in standard directories, while a malicious DLL is often found in an unusual location, such as the same folder as the executable that calls it.
- Wrong executable location. Attackers often save executables in non-standard paths, like temporary directories or user folders, instead of %Program Files%.
- Renamed executable. To avoid detection, attackers frequently save legitimate applications under arbitrary names.
- Library size has changed, and it is no longer signed.
- Modified library structure.
Training sample and labeling
For the training sample, we used dynamic library load data provided by our internal automatic processing systems, which handle millions of files every day, and anonymized telemetry, such as that voluntarily provided by Kaspersky users through Kaspersky Security Network.
The training sample was labeled in three iterations. Initially, we could not automatically pull event labeling from our analysts that indicated whether an event was a DLL hijacking attack. So, we used data from our databases containing only file reputation, and labeled the rest of the data manually. We labeled as DLL hijacking those library-call events where the process was definitively legitimate but the DLL was definitively malicious. However, this labeling was not enough because some processes, like “svchost”, are designed mainly to load various libraries. As a result, the model we trained on this data had a high rate of false positives and was not practical for real-world use.
In the next iteration, we additionally filtered malicious libraries by family, keeping only those which were known to exhibit DLL-hijacking behavior. The model trained on this refined data showed significantly better accuracy and essentially confirmed our hypothesis that we could use machine learning to detect this type of attacks.
At this stage, our training dataset had tens of millions of objects. This included about 20 million clean files and around 50,000 definitively malicious ones.
Status | Total | Unique files |
Unknown | ~ 18M | ~ 6M |
Malicious | ~ 50K | ~ 1,000 |
Clean | ~ 20M | ~ 250K |
We then trained subsequent models on the results of their predecessors, which had been verified and further labeled by analysts. This process significantly increased the efficiency of our training.
Loading DLLs: what does normal look like?
So, we had a labeled sample with a large number of library loading events from various processes. How can we describe a “clean” library? Using a process name + library name combination does not account for renamed processes. Besides, a legitimate user, not just an attacker, can rename a process. If we used the process hash instead of the name, we would solve the renaming problem, but then every version of the same library would be treated as a separate library. We ultimately settled on using a library name + process signature combination. While this approach considers all identically named libraries from a single vendor as one, it generally produces a more or less realistic picture.
To describe safe library loading events, we used a set of counters that included information about the processes (the frequency of a specific process name for a file with a given hash, the frequency of a specific file path for a file with that hash, and so on), information about the libraries (the frequency of a specific path for that library, the percentage of legitimate launches, and so on), and event properties (that is, whether the library is in the same directory as the file that calls it).
The result was a system with multiple aggregates (sets of counters and keys) that could describe an input event. These aggregates can contain a single key (e.g., a DLL’s hash sum) or multiple keys (e.g., a process’s hash sum + process signature). Based on these aggregates, we can derive a set of features that describe the library loading event. The diagram below provides examples of how these features are derived:
Feature extraction from aggregates
Loading DLLs: how to describe hijacking
Certain feature combinations (dependencies) strongly indicate DLL hijacking. These can be simple dependencies. For some processes, the clean library they call always resides in a separate folder, while the malicious one is most often placed in the process folder.
Other dependencies can be more complex and require several conditions to be met. For example, a process renaming itself does not, on its own, indicate DLL hijacking. However, if the new name appears in the data stream for the first time, and the library is located on a non-standard path, it is highly likely to be malicious.
Model evolution
Within this project, we trained several generations of models. The primary goal of the first generation was to show that machine learning could at all be applied to detecting DLL hijacking. When training this model, we used the broadest possible interpretation of the term.
The model’s workflow was as simple as possible:
- We took a data stream and extracted a frequency description for selected sets of keys.
- We took the same data stream from a different time period and obtained a set of features.
- We used type 1 labeling, where events in which a legitimate process loaded a malicious library from a specified set of families were marked as DLL hijacking.
- We trained the model on the resulting data.
First-generation model diagram
The second-generation model was trained on data that had been processed by the first-generation model and verified by analysts (labeling type 2). Consequently, the labeling was more precise than during the training of the first model. Additionally, we added more features to describe the library structure and slightly complicated the workflow for describing library loads.
Second-generation model diagram
Based on the results from this second-generation model, we were able to identify several common types of false positives. For example, the training sample included potentially unwanted applications. These can, in certain contexts, exhibit behavior similar to DLL hijacking, but they are not malicious and rarely belong to this attack type.
We fixed these errors in the third-generation model. First, with the help of analysts, we flagged the potentially unwanted applications in the training sample so the model would not detect them. Second, in this new version, we used an expanded labeling that included useful detections from both the first and second generations. Additionally, we expanded the feature description through one-hot encoding — a technique for converting categorical features into a binary format — for certain fields. Also, since the volume of events processed by the model increased over time, this version added normalization of all features based on the data flow size.
Third-generation model diagram
Comparison of the models
To evaluate the evolution of our models, we applied them to a test data set none of them had worked with before. The graph below shows the ratio of true positive to false positive verdicts for each model.
Trends in true positives and false positives from the first-, second-, and third-generation models
As the models evolved, the percentage of true positives grew. While the first-generation model achieved a relatively good result (0.6 or higher) only with a very high false positive rate (10⁻³ or more), the second-generation model reached this at 10⁻⁵. The third-generation model, at the same low false positive rate, produced 0.8 true positives, which is considered a good result.
Evaluating the models on the data stream at a fixed score shows that the absolute number of new events labeled as DLL Hijacking increased from one generation to the next. That said, evaluating the models by their false verdict rate also helps track progress: the first model has a fairly high error rate, while the second and third generations have significantly lower ones.
False positives rate among model outputs, July 2024 – August 2025 (download)
Practical application of the models
All three model generations are used in our internal systems to detect likely cases of DLL hijacking within telemetry data streams. We receive 6.5 million security events daily, linked to 800,000 unique files. Aggregates are built from this sample at a specified interval, enriched, and then fed into the models. The output data is then ranked by model and by the probability of DLL hijacking assigned to the event, and then sent to our analysts. For instance, if the third-generation model flags an event as DLL hijacking with high confidence, it should be investigated first, whereas a less definitive verdict from the first-generation model can be checked last.
Simultaneously, the models are tested on a separate data stream they have not seen before. This is done to assess their effectiveness over time, as a model’s detection performance can degrade. The graph below shows that the percentage of correct detections varies slightly over time, but on average, the models detect 70–80% of DLL hijacking cases.
DLL hijacking detection trends for all three models, October 2024 – September 2025 (download)
Additionally, we recently deployed a DLL hijacking detection model into the Kaspersky SIEM, but first we tested the model in the Kaspersky MDR service. During the pilot phase, the model helped to detect and prevent a number of DLL hijacking incidents in our clients’ systems. We have written a separate article about how the machine learning model for detecting targeted attacks involving DLL hijacking works in Kaspersky SIEM and the incidents it has identified.
Conclusion
Based on the training and application of the three generations of models, the experiment to detect DLL hijacking using machine learning was a success. We were able to develop a model that distinguishes events resembling DLL hijacking from other events, and refined it to a state suitable for practical use, not only in our internal systems but also in commercial products. Currently, the models operate in the cloud, scanning hundreds of thousands of unique files per month and detecting thousands of files used in DLL hijacking attacks each month. They regularly identify previously unknown variations of these attacks. The results from the models are sent to analysts who verify them and create new detection rules based on their findings.
OrionBelt©
in reply to simona • • •simona
in reply to simona • — (Livorno) •